home *** CD-ROM | disk | FTP | other *** search
Unknown | 1997-04-17 | 2.9 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 7c 0b 00 00 19 00 00 00 |TUTOR 06||.......|
|00000010| 47 6c 6f 73 73 61 72 79 | 20 66 6f 72 20 43 68 61 |Glossary| for Cha|
|00000020| 70 74 65 72 20 38 0d 0a | 00 0d 0a 00 0d 0b 00 10 |pter 8..|........|
|00000030| 38 2d 31 2d 31 0e 73 38 | 2d 31 2d 31 0e 41 41 53 |8-1-1.s8|-1-1.AAS|
|00000040| 0f 0d 0a 00 10 38 2d 35 | 2d 31 0e 73 38 2d 35 2d |.....8-5|-1.s8-5-|
|00000050| 32 0e 41 62 73 6f 6c 75 | 74 65 20 56 61 6c 75 65 |2.Absolu|te Value|
|00000060| 20 6f 66 20 61 20 43 6f | 6d 70 6c 65 78 20 4e 75 | of a Co|mplex Nu|
|00000070| 6d 62 65 72 0f 0d 0a 00 | 10 38 2d 33 2d 31 0e 73 |mber....|.8-3-1.s|
|00000080| 38 2d 33 2d 33 0e 41 64 | 64 69 74 69 6f 6e 20 6f |8-3-3.Ad|dition o|
|00000090| 66 20 56 65 63 74 6f 72 | 73 0f 0d 0a 00 10 38 2d |f Vector|s.....8-|
|000000a0| 33 2d 31 0e 73 38 2d 33 | 2d 34 0e 41 64 64 69 74 |3-1.s8-3|-4.Addit|
|000000b0| 69 76 65 20 49 64 65 6e | 74 69 74 79 0f 0d 0a 00 |ive Iden|tity....|
|000000c0| 10 38 2d 33 2d 31 0e 73 | 38 2d 33 2d 34 0e 41 64 |.8-3-1.s|8-3-4.Ad|
|000000d0| 64 69 74 69 76 65 20 49 | 6e 76 65 72 73 65 0f 0d |ditive I|nverse..|
|000000e0| 0a 00 10 38 2d 31 2d 31 | 0e 73 38 2d 31 2d 33 0e |...8-1-1|.s8-1-3.|
|000000f0| 41 6d 62 69 67 75 6f 75 | 73 20 43 61 73 65 20 28 |Ambiguou|s Case (|
|00000100| 53 53 41 29 0f 0d 0a 00 | 10 38 2d 34 2d 31 0e 73 |SSA)....|.8-4-1.s|
|00000110| 38 2d 34 2d 33 0e 41 6e | 67 6c 65 20 42 65 74 77 |8-4-3.An|gle Betw|
|00000120| 65 65 6e 20 54 77 6f 20 | 4e 6f 6e 7a 65 72 6f 20 |een Two |Nonzero |
|00000130| 56 65 63 74 6f 72 73 0f | 0d 0a 00 10 38 2d 31 2d |Vectors.|....8-1-|
|00000140| 31 0e 73 38 2d 31 2d 34 | 0e 41 72 65 61 20 6f 66 |1.s8-1-4|.Area of|
|00000150| 20 61 6e 20 4f 62 6c 69 | 71 75 65 20 54 72 69 61 | an Obli|que Tria|
|00000160| 6e 67 6c 65 0f 0d 0a 00 | 10 38 2d 35 2d 31 0e 73 |ngle....|.8-5-1.s|
|00000170| 38 2d 35 2d 33 0e 41 72 | 67 75 6d 65 6e 74 20 6f |8-5-3.Ar|gument o|
|00000180| 66 20 61 20 43 6f 6d 70 | 6c 65 78 20 4e 75 6d 62 |f a Comp|lex Numb|
|00000190| 65 72 0f 0d 0a 00 10 38 | 2d 31 2d 31 0e 73 38 2d |er.....8|-1-1.s8-|
|000001a0| 31 2d 31 0e 41 53 41 0f | 0d 0a 00 10 38 2d 33 2d |1-1.ASA.|....8-3-|
|000001b0| 31 0e 73 38 2d 33 2d 34 | 0e 41 73 73 6f 63 69 61 |1.s8-3-4|.Associa|
|000001c0| 74 69 76 65 20 50 72 6f | 70 65 72 74 79 20 6f 66 |tive Pro|perty of|
|000001d0| 20 41 64 64 69 74 69 6f | 6e 0f 0d 0a 00 10 38 2d | Additio|n.....8-|
|000001e0| 33 2d 31 0e 73 38 2d 33 | 2d 34 0e 41 73 73 6f 63 |3-1.s8-3|-4.Assoc|
|000001f0| 69 61 74 69 76 65 20 50 | 72 6f 70 65 72 74 79 20 |iative P|roperty |
|00000200| 6f 66 20 53 63 61 6c 61 | 72 20 4d 75 6c 74 69 70 |of Scala|r Multip|
|00000210| 6c 69 63 61 74 69 6f 6e | 0f 0d 0a 00 10 38 2d 33 |lication|.....8-3|
|00000220| 2d 31 0e 73 38 2d 33 2d | 34 0e 43 6f 6d 6d 75 74 |-1.s8-3-|4.Commut|
|00000230| 61 74 69 76 65 20 50 72 | 6f 70 65 72 74 79 20 6f |ative Pr|operty o|
|00000240| 66 20 41 64 64 69 74 69 | 6f 6e 0f 0d 0a 00 10 38 |f Additi|on.....8|
|00000250| 2d 35 2d 31 0e 73 38 2d | 35 2d 31 0e 43 6f 6d 70 |-5-1.s8-|5-1.Comp|
|00000260| 6c 65 78 20 50 6c 61 6e | 65 0f 0d 0a 00 10 38 2d |lex Plan|e.....8-|
|00000270| 33 2d 31 0e 73 38 2d 33 | 2d 31 0e 43 6f 6d 70 6f |3-1.s8-3|-1.Compo|
|00000280| 6e 65 6e 74 20 46 6f 72 | 6d 20 6f 66 20 61 20 56 |nent For|m of a V|
|00000290| 65 63 74 6f 72 0f 0d 0a | 00 10 38 2d 35 2d 31 0e |ector...|..8-5-1.|
|000002a0| 73 38 2d 35 2d 36 0e 44 | 65 66 69 6e 69 74 69 6f |s8-5-6.D|efinitio|
|000002b0| 6e 20 6f 66 20 74 68 65 | 20 11 33 6e 11 31 74 68 |n of the| .3n.1th|
|000002c0| 20 72 6f 6f 74 20 6f 66 | 20 61 20 43 6f 6d 70 6c | root of| a Compl|
|000002d0| 65 78 20 4e 75 6d 62 65 | 72 0f 0d 0a 00 10 38 2d |ex Numbe|r.....8-|
|000002e0| 35 2d 31 0e 73 38 2d 35 | 2d 35 0e 44 65 4d 6f 69 |5-1.s8-5|-5.DeMoi|
|000002f0| 76 72 65 27 73 20 54 68 | 65 6f 72 65 6d 0f 0d 0a |vre's Th|eorem...|
|00000300| 00 10 38 2d 33 2d 31 0e | 73 38 2d 33 2d 33 0e 44 |..8-3-1.|s8-3-3.D|
|00000310| 69 66 66 65 72 65 6e 63 | 65 20 6f 66 20 56 65 63 |ifferenc|e of Vec|
|00000320| 74 6f 72 73 0f 0d 0a 00 | 10 38 2d 33 2d 31 0e 73 |tors....|.8-3-1.s|
|00000330| 38 2d 33 2d 31 0e 44 69 | 72 65 63 74 65 64 20 4c |8-3-1.Di|rected L|
|00000340| 69 6e 65 20 53 65 67 6d | 65 6e 74 0f 0d 0a 00 10 |ine Segm|ent.....|
|00000350| 38 2d 33 2d 31 0e 73 38 | 2d 33 2d 37 0e 44 69 72 |8-3-1.s8|-3-7.Dir|
|00000360| 65 63 74 69 6f 6e 20 41 | 6e 67 6c 65 20 6f 66 20 |ection A|ngle of |
|00000370| 61 20 56 65 63 74 6f 72 | 0f 0d 0a 00 10 38 2d 33 |a Vector|.....8-3|
|00000380| 2d 31 0e 73 38 2d 33 2d | 34 0e 44 69 73 74 72 69 |-1.s8-3-|4.Distri|
|00000390| 62 75 74 69 76 65 20 50 | 72 6f 70 65 72 74 79 0f |butive P|roperty.|
|000003a0| 0d 0a 00 10 38 2d 34 2d | 31 0e 73 38 2d 34 2d 31 |....8-4-|1.s8-4-1|
|000003b0| 0e 44 6f 74 20 50 72 6f | 64 75 63 74 0f 0d 0a 00 |.Dot Pro|duct....|
|000003c0| 10 38 2d 33 2d 31 0e 73 | 38 2d 33 2d 31 0e 45 71 |.8-3-1.s|8-3-1.Eq|
|000003d0| 75 69 76 61 6c 65 6e 63 | 65 20 6f 66 20 44 69 72 |uivalenc|e of Dir|
|000003e0| 65 63 74 65 64 20 4c 69 | 6e 65 20 53 65 67 6d 65 |ected Li|ne Segme|
|000003f0| 6e 74 73 0f 0d 0a 00 10 | 38 2d 33 2d 31 0e 73 38 |nts.....|8-3-1.s8|
|00000400| 2d 33 2d 32 0e 46 69 6e | 64 69 6e 67 20 74 68 65 |-3-2.Fin|ding the|
|00000410| 20 43 6f 6d 70 6f 6e 65 | 6e 74 20 46 6f 72 6d 20 | Compone|nt Form |
|00000420| 6f 66 20 61 20 56 65 63 | 74 6f 72 0f 0d 0a 00 10 |of a Vec|tor.....|
|00000430| 38 2d 35 2d 31 0e 73 38 | 2d 35 2d 37 0e 46 69 6e |8-5-1.s8|-5-7.Fin|
|00000440| 64 69 6e 67 20 74 68 65 | 20 11 33 6e 11 31 74 68 |ding the| .3n.1th|
|00000450| 20 52 6f 6f 74 20 6f 66 | 20 61 20 43 6f 6d 70 6c | Root of| a Compl|
|00000460| 65 78 20 4e 75 6d 62 65 | 72 0f 0d 0a 00 10 38 2d |ex Numbe|r.....8-|
|00000470| 32 2d 31 0e 73 38 2d 32 | 2d 32 0e 48 65 72 6f 6e |2-1.s8-2|-2.Heron|
|00000480| 27 73 20 41 72 65 61 20 | 46 6f 72 6d 75 6c 61 0f |'s Area |Formula.|
|00000490| 0d 0a 00 10 38 2d 33 2d | 31 0e 73 38 2d 33 2d 36 |....8-3-|1.s8-3-6|
|000004a0| 0e 48 6f 72 69 7a 6f 6e | 74 61 6c 20 43 6f 6d 70 |.Horizon|tal Comp|
|000004b0| 6f 6e 65 6e 74 20 6f 66 | 20 61 20 56 65 63 74 6f |onent of| a Vecto|
|000004c0| 72 0f 0d 0a 00 10 38 2d | 35 2d 31 0e 73 38 2d 35 |r.....8-|5-1.s8-5|
|000004d0| 2d 31 0e 49 6d 61 67 69 | 6e 61 72 79 20 41 78 69 |-1.Imagi|nary Axi|
|000004e0| 73 20 6f 66 20 74 68 65 | 20 43 6f 6d 70 6c 65 78 |s of the| Complex|
|000004f0| 20 50 6c 61 6e 65 0f 0d | 0a 00 10 38 2d 33 2d 31 | Plane..|...8-3-1|
|00000500| 0e 73 38 2d 33 2d 31 0e | 49 6e 69 74 69 61 6c 20 |.s8-3-1.|Initial |
|00000510| 50 6f 69 6e 74 20 6f 66 | 20 61 20 44 69 72 65 63 |Point of| a Direc|
|00000520| 74 65 64 20 4c 69 6e 65 | 20 53 65 67 6d 65 6e 74 |ted Line| Segment|
|00000530| 0f 0d 0a 00 10 38 2d 32 | 2d 31 0e 73 38 2d 32 2d |.....8-2|-1.s8-2-|
|00000540| 31 0e 4c 61 77 20 6f 66 | 20 43 6f 73 69 6e 65 73 |1.Law of| Cosines|
|00000550| 0f 0d 0a 00 10 38 2d 31 | 2d 31 0e 73 38 2d 31 2d |.....8-1|-1.s8-1-|
|00000560| 32 0e 4c 61 77 20 6f 66 | 20 53 69 6e 65 73 0f 0d |2.Law of| Sines..|
|00000570| 0a 00 10 38 2d 33 2d 31 | 0e 73 38 2d 33 2d 32 0e |...8-3-1|.s8-3-2.|
|00000580| 4c 65 6e 67 74 68 20 6f | 66 20 61 20 56 65 63 74 |Length o|f a Vect|
|00000590| 6f 72 0f 0d 0a 00 10 38 | 2d 33 2d 31 0e 73 38 2d |or.....8|-3-1.s8-|
|000005a0| 33 2d 36 0e 4c 69 6e 65 | 61 72 20 43 6f 6d 62 69 |3-6.Line|ar Combi|
|000005b0| 6e 61 74 69 6f 6e 20 6f | 66 20 74 68 65 20 53 74 |nation o|f the St|
|000005c0| 61 6e 64 61 72 64 20 55 | 6e 69 74 20 56 65 63 74 |andard U|nit Vect|
|000005d0| 6f 72 73 0f 0d 0a 00 10 | 38 2d 35 2d 31 0e 73 38 |ors.....|8-5-1.s8|
|000005e0| 2d 35 2d 33 0e 4d 6f 64 | 75 6c 75 73 20 6f 66 20 |-5-3.Mod|ulus of |
|000005f0| 61 20 43 6f 6d 70 6c 65 | 78 20 4e 75 6d 62 65 72 |a Comple|x Number|
|00000600| 0f 0d 0a 00 10 38 2d 33 | 2d 31 0e 73 38 2d 33 2d |.....8-3|-1.s8-3-|
|00000610| 33 0e 4e 65 67 61 74 69 | 76 65 20 6f 66 20 61 20 |3.Negati|ve of a |
|00000620| 56 65 63 74 6f 72 0f 0d | 0a 00 10 38 2d 35 2d 31 |Vector..|...8-5-1|
|00000630| 0e 73 38 2d 35 2d 35 0e | 11 33 6e 11 31 74 68 20 |.s8-5-5.|.3n.1th |
|00000640| 50 6f 77 65 72 20 6f 66 | 20 61 20 43 6f 6d 70 6c |Power of| a Compl|
|00000650| 65 78 20 4e 75 6d 62 65 | 72 0f 0d 0a 00 10 38 2d |ex Numbe|r.....8-|
|00000660| 35 2d 31 0e 73 38 2d 35 | 2d 37 0e 11 33 6e 11 31 |5-1.s8-5|-7..3n.1|
|00000670| 74 68 20 52 6f 6f 74 20 | 6f 66 20 61 20 43 6f 6d |th Root |of a Com|
|00000680| 70 6c 65 78 20 4e 75 6d | 62 65 72 0f 0d 0a 00 10 |plex Num|ber.....|
|00000690| 38 2d 35 2d 31 0e 73 38 | 2d 35 2d 36 0e 11 33 6e |8-5-1.s8|-5-6..3n|
|000006a0| 11 31 74 68 20 72 6f 6f | 74 20 6f 66 20 61 20 43 |.1th roo|t of a C|
|000006b0| 6f 6d 70 6c 65 78 20 4e | 75 6d 62 65 72 2c 20 44 |omplex N|umber, D|
|000006c0| 65 66 69 6e 69 74 69 6f | 6e 20 6f 66 0f 0d 0a 00 |efinitio|n of....|
|000006d0| 10 38 2d 35 2d 31 0e 73 | 38 2d 35 2d 37 0e 11 33 |.8-5-1.s|8-5-7..3|
|000006e0| 6e 11 31 74 68 20 52 6f | 6f 74 73 20 6f 66 20 55 |n.1th Ro|ots of U|
|000006f0| 6e 69 74 79 0f 0d 0a 00 | 10 38 2d 31 2d 31 0e 73 |nity....|.8-1-1.s|
|00000700| 38 2d 31 2d 31 0e 4f 62 | 6c 69 71 75 65 20 54 72 |8-1-1.Ob|lique Tr|
|00000710| 69 61 6e 67 6c 65 0f 0d | 0a 00 10 38 2d 34 2d 31 |iangle..|...8-4-1|
|00000720| 0e 73 38 2d 34 2d 34 0e | 4f 72 74 68 6f 67 6f 6e |.s8-4-4.|Orthogon|
|00000730| 61 6c 20 56 65 63 74 6f | 72 73 0f 0d 0a 00 10 38 |al Vecto|rs.....8|
|00000740| 2d 34 2d 31 0e 73 38 2d | 34 2d 34 0e 50 61 72 61 |-4-1.s8-|4-4.Para|
|00000750| 6c 6c 65 6c 20 56 65 63 | 74 6f 72 73 0f 0d 0a 00 |llel Vec|tors....|
|00000760| 10 38 2d 33 2d 31 0e 73 | 38 2d 33 2d 33 0e 50 61 |.8-3-1.s|8-3-3.Pa|
|00000770| 72 61 6c 6c 65 6c 6f 67 | 72 61 6d 20 4c 61 77 0f |rallelog|ram Law.|
|00000780| 0d 0a 00 10 38 2d 35 2d | 31 0e 73 38 2d 35 2d 33 |....8-5-|1.s8-5-3|
|00000790| 0e 50 6f 6c 61 72 20 46 | 6f 72 6d 20 6f 66 20 61 |.Polar F|orm of a|
|000007a0| 20 43 6f 6d 70 6c 65 78 | 20 4e 75 6d 62 65 72 0f | Complex| Number.|
|000007b0| 0d 0a 00 10 38 2d 35 2d | 31 0e 73 38 2d 35 2d 34 |....8-5-|1.s8-5-4|
|000007c0| 0e 50 72 6f 64 75 63 74 | 20 6f 66 20 43 6f 6d 70 |.Product| of Comp|
|000007d0| 6c 65 78 20 4e 75 6d 62 | 65 72 73 0f 0d 0a 00 10 |lex Numb|ers.....|
|000007e0| 38 2d 34 2d 31 0e 73 38 | 2d 34 2d 35 0e 50 72 6f |8-4-1.s8|-4-5.Pro|
|000007f0| 6a 65 63 74 69 6f 6e 20 | 6f 66 20 11 25 75 20 11 |jection |of .%u .|
|00000800| 31 6f 6e 74 6f 20 11 25 | 76 11 31 0f 0d 0a 00 10 |1onto .%|v.1.....|
|00000810| 38 2d 34 2d 31 0e 73 38 | 2d 34 2d 32 0e 50 72 6f |8-4-1.s8|-4-2.Pro|
|00000820| 70 65 72 74 69 65 73 20 | 6f 66 20 74 68 65 20 44 |perties |of the D|
|00000830| 6f 74 20 50 72 6f 64 75 | 63 74 0f 0d 0a 00 10 38 |ot Produ|ct.....8|
|00000840| 2d 33 2d 31 0e 73 38 2d | 33 2d 34 0e 50 72 6f 70 |-3-1.s8-|3-4.Prop|
|00000850| 65 72 74 69 65 73 20 6f | 66 20 56 65 63 74 6f 72 |erties o|f Vector|
|00000860| 20 41 64 64 69 74 69 6f | 6e 20 61 6e 64 20 53 63 | Additio|n and Sc|
|00000870| 61 6c 61 72 20 4d 75 6c | 74 69 70 6c 69 63 61 74 |alar Mul|tiplicat|
|00000880| 69 6f 6e 0f 0d 0a 00 10 | 38 2d 35 2d 31 0e 73 38 |ion.....|8-5-1.s8|
|00000890| 2d 35 2d 34 0e 51 75 6f | 74 69 65 6e 74 20 6f 66 |-5-4.Quo|tient of|
|000008a0| 20 43 6f 6d 70 6c 65 78 | 20 4e 75 6d 62 65 72 73 | Complex| Numbers|
|000008b0| 0f 0d 0a 00 10 38 2d 35 | 2d 31 0e 73 38 2d 35 2d |.....8-5|-1.s8-5-|
|000008c0| 31 0e 52 65 61 6c 20 41 | 78 69 73 20 6f 66 20 74 |1.Real A|xis of t|
|000008d0| 68 65 20 43 6f 6d 70 6c | 65 78 20 50 6c 61 6e 65 |he Compl|ex Plane|
|000008e0| 0f 0d 0a 00 10 38 2d 31 | 2d 31 0e 73 38 2d 31 2d |.....8-1|-1.s8-1-|
|000008f0| 31 0e 53 41 53 0f 0d 0a | 00 10 38 2d 33 2d 31 0e |1.SAS...|..8-3-1.|
|00000900| 73 38 2d 33 2d 33 0e 53 | 63 61 6c 61 72 20 4d 75 |s8-3-3.S|calar Mu|
|00000910| 6c 74 69 70 6c 69 63 61 | 74 69 6f 6e 20 6f 66 20 |ltiplica|tion of |
|00000920| 56 65 63 74 6f 72 73 0f | 0d 0a 00 10 38 2d 33 2d |Vectors.|....8-3-|
|00000930| 31 0e 73 38 2d 33 2d 34 | 0e 53 63 61 6c 61 72 20 |1.s8-3-4|.Scalar |
|00000940| 4d 75 6c 74 69 70 6c 69 | 63 61 74 69 76 65 20 49 |Multipli|cative I|
|00000950| 64 65 6e 74 69 74 79 0f | 0d 0a 00 10 38 2d 31 2d |dentity.|....8-1-|
|00000960| 31 0e 73 38 2d 31 2d 31 | 0e 53 53 41 0f 0d 0a 00 |1.s8-1-1|.SSA....|
|00000970| 10 38 2d 31 2d 31 0e 73 | 38 2d 31 2d 31 0e 53 53 |.8-1-1.s|8-1-1.SS|
|00000980| 53 0f 0d 0a 00 10 38 2d | 33 2d 31 0e 73 38 2d 33 |S.....8-|3-1.s8-3|
|00000990| 2d 31 0e 53 74 61 6e 64 | 61 72 64 20 50 6f 73 69 |-1.Stand|ard Posi|
|000009a0| 74 69 6f 6e 20 6f 66 20 | 61 20 56 65 63 74 6f 72 |tion of |a Vector|
|000009b0| 0f 0d 0a 00 10 38 2d 33 | 2d 31 0e 73 38 2d 33 2d |.....8-3|-1.s8-3-|
|000009c0| 36 0e 53 74 61 6e 64 61 | 72 64 20 55 6e 69 74 20 |6.Standa|rd Unit |
|000009d0| 56 65 63 74 6f 72 73 0f | 0d 0a 00 10 38 2d 33 2d |Vectors.|....8-3-|
|000009e0| 31 0e 73 38 2d 33 2d 33 | 0e 53 75 6d 20 6f 66 20 |1.s8-3-3|.Sum of |
|000009f0| 56 65 63 74 6f 72 73 0f | 0d 0a 00 10 38 2d 33 2d |Vectors.|....8-3-|
|00000a00| 31 0e 73 38 2d 33 2d 31 | 0e 54 65 72 6d 69 6e 61 |1.s8-3-1|.Termina|
|00000a10| 6c 20 50 6f 69 6e 74 20 | 6f 66 20 61 20 44 69 72 |l Point |of a Dir|
|00000a20| 65 63 74 65 64 20 4c 69 | 6e 65 20 53 65 67 6d 65 |ected Li|ne Segme|
|00000a30| 6e 74 0f 0d 0a 00 10 38 | 2d 35 2d 31 0e 73 38 2d |nt.....8|-5-1.s8-|
|00000a40| 35 2d 33 0e 54 72 69 67 | 6f 6e 6f 6d 65 74 72 69 |5-3.Trig|onometri|
|00000a50| 63 20 46 6f 72 6d 20 6f | 66 20 61 20 43 6f 6d 70 |c Form o|f a Comp|
|00000a60| 6c 65 78 20 4e 75 6d 62 | 65 72 0f 0d 0a 00 10 38 |lex Numb|er.....8|
|00000a70| 2d 33 2d 31 0e 73 38 2d | 33 2d 35 0e 55 6e 69 74 |-3-1.s8-|3-5.Unit|
|00000a80| 20 56 65 63 74 6f 72 20 | 69 6e 20 74 68 65 20 44 | Vector |in the D|
|00000a90| 69 72 65 63 74 69 6f 6e | 20 6f 66 20 61 20 56 65 |irection| of a Ve|
|00000aa0| 63 74 6f 72 20 11 21 76 | 11 31 0f 0d 0a 00 10 38 |ctor .!v|.1.....8|
|00000ab0| 2d 33 2d 31 0e 73 38 2d | 33 2d 32 0e 55 6e 69 74 |-3-1.s8-|3-2.Unit|
|00000ac0| 20 56 65 63 74 6f 72 0f | 0d 0a 00 10 38 2d 34 2d | Vector.|....8-4-|
|00000ad0| 31 0e 73 38 2d 34 2d 35 | 0e 56 65 63 74 6f 72 20 |1.s8-4-5|.Vector |
|00000ae0| 43 6f 6d 70 6f 6e 65 6e | 74 20 6f 66 20 11 25 75 |Componen|t of .%u|
|00000af0| 20 11 31 6f 72 74 68 6f | 67 6f 6e 61 6c 20 74 6f | .1ortho|gonal to|
|00000b00| 20 11 25 76 11 31 0f 0d | 0a 00 10 38 2d 33 2d 31 | .%v.1..|...8-3-1|
|00000b10| 0e 73 38 2d 33 2d 31 0e | 56 65 63 74 6f 72 20 69 |.s8-3-1.|Vector i|
|00000b20| 6e 20 74 68 65 20 50 6c | 61 6e 65 0f 0d 0a 00 10 |n the Pl|ane.....|
|00000b30| 38 2d 33 2d 31 0e 73 38 | 2d 33 2d 36 0e 56 65 72 |8-3-1.s8|-3-6.Ver|
|00000b40| 74 69 63 61 6c 20 43 6f | 6d 70 6f 6e 65 6e 74 20 |tical Co|mponent |
|00000b50| 6f 66 20 61 20 56 65 63 | 74 6f 72 0f 0d 0a 00 10 |of a Vec|tor.....|
|00000b60| 38 2d 33 2d 31 0e 73 38 | 2d 33 2d 31 0e 5a 65 72 |8-3-1.s8|-3-1.Zer|
|00000b70| 6f 20 56 65 63 74 6f 72 | 0f 0d 0a 00 26 00 00 00 |o Vector|....&...|
|00000b80| 56 0b 00 00 4d 16 00 00 | 10 00 00 00 00 00 00 00 |V...M...|........|
|00000b90| 4d 41 49 4e 00 | |MAIN. | |
+--------+-------------------------+-------------------------+--------+--------+